
Deep Belief Networks and their application to Music 
 
Introduction 

In this project we investigate the new area of machine learning research called deep learning 
and explore some of its interesting applications.  Deep learning has grabbed focus because 
of its ability to model highly varying functions associated with complex behaviours and 
human intelligence. Another major reason why they are so impactful is the fact that certain 
functions when compactly represented by deep architectures might require exponential 
number of computational elements in case we reduce depth. 

Artificial Neural Networks 
 
A classical perceptron is a linear classifier accepting a vector of real valued inputs and giving 
an output of 1 or -1 based on result being greater or lesser than threshold, or simply the 
difference from threshold for continuous output. An active neuron implies an input close to 1. 
 A network of perceptron assuming a layered structure with each layer neurons serving as 
input to next layer is called feedforward network. Since cascading of such linear units would 
only result in piecewise linear functions we replace the discontinuous threshold with a 
sigmoid function. Mathematically the hypothesis class of perceptrons is given by: 
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The linear perceptron is given by                                   . A perceptron with sigmoid activation 
function is given by                                       . In a feedforward network the set of nodes 
without parents form the input layer. The leaf nodes form the output layer. The nodes lying 
on path from input to output layer occurring in middle are called the hidden layer. For each 
edge in this network there is an associated weight. Let us represent the weight associated 
with connection between node i in layer l to node j in layer l+1 as W(l)

ij, and  b(l)
i as the bias 

associated with unit i in layer l+1. Let a(l)
i denote the activation of neuron i in layer l. We can 

succinctly represent the computation activation values in feedforward phase by a(l+1)  = 
f(W(l).a(l)+b) where f is the activation function. 
 
Sparse Autoencoder 
 
A neural network which sets the target output values equal to the input values is called the 
autoencoder. This kind of network is used for unsupervised learning which basically refers to 
learning large datasets with few or no labels associated with them. A network is called 
sparse if we constrain the neurons to be inactive most of the time. Mathematically this can 
be achieved by setting the expected value of activation close to -1 (say -0.9).  

We can define a cost function C for any neural network using error from output and 
regularization term as                                                                             . In an online learning 
scenario the gradients of cost function can be used to training weights by using steepest 
descent. Another strategy could be to minimize the expected value of cost function. The 
gradient of cost function can be efficiently described using the input, weight, biases, 
activation values and backpropagated error terms from expected output, and can be used to 
update weight and biases.  
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Backpropagation algorithm gives an efficient way to compute partial derivatives required to 
perform steepest descent. The algorithm involves first computation of all activations by 
feedforward computation over the neural network. Using the values computed in feed 
forward phase we train the weights for higher layers and backpropagate the error term to 
lower layers. For the output layer computed error is given by        .                                     . 
Mathematically the propagated error is then given by                                                                   
. The partial derivative of cost function and corresponding updates are given following 
equations. 
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The sparsity on trained neural network can be enforced by keeping expected sparseness of 
neural network and reinforcing bias terms based on deviation of actual sparseness from 
expected sparseness.  

Restricted Boltzmann Machines 

Boltzmann machines are the super class of deep learning architectures. A Boltzmann 
machine is a network of interconnected perceptron units with each unit being stochastic 
function. The probability of firing of each perceptron is given by sigmoid function. The global 
state of such distribution of perceptrons is governed by Maxwell Boltzmann statistics. We 
can theoretically define quantities like energy and temperature of such system as given 
below. It can be shown that the stochastic probability selection confirms with steady state 
energy distribution of these machines at a given temperature. 
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In a Maxwell-Boltzmann distribution the probability of a system state is governed by the 
energy of that state. Artificially inputting values inside the deep network is identically to fixing 
the temperature of particles of distribution to a certain value. To compute the correct 
distribution we need to ensure thermal equilibrium between particles. This distribution of 
machine states over training set is denoted by P0(v). 

In generative mode the deep layer will emulate the Boltzmann distribution at its lowest 
possible energy. The expected correlation between units can again be computed by running 
the machine a number of times until it cools down and reaches a global minimum. The real 
distribution when left to itself can be denoted as P∝ (v). Our training requirement is to bring 
both these probabilities as close to one another as possible. This process of cooling down 
after setting temperature is called Simulated Annealing. The level of similarity between the 
states can be judged by Kullback-Leiber divergence(KL):  
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Theoretically Boltzmann machine is extremely powerful computational medium. But this 
power comes at a cost. The training method of simulated annealing fails when a machine is 
scaled to anything larger than a trivial machine. However clever learning algorithms can be 
developed for a simplification of the Boltzmann machine called Restricted Boltzmann 
machine, which does not allow intralayer connections between hidden units. The structure of 
RBM makes sampling of steady state distribution easy because all hidden states can be 
updated in parallel independent of each other. These values of updated hidden states can 
be used to update the input units. It can be proved that we can use samples from n iterations 
to perform steepest descent to train this machine. Mathematically 
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It can be shown that auto encoder training approximates RBM training by contrastive 
divergence. The following figure (figure a) shows features learned by a RBM with 10 hidden 
units on an image databank of sofa images (generated by self). Compare these to edges 
(figure b) learnt by sparse auto encoder. 

 

Figure 1.a (left) Weight Vector learnt from RBM Training. Figure 1.b (right) Weight vector learnt from Sparse 
Autoencoder. 

The contrastive divergence technique fails to learn multilayer generative networks because 
Gibbs sampling cycles might no be sufficient for network to reach equilibrium. However a 
deep network can be simplified by considering training of one layer at a time. Training 
deeper layers then involves learning and fixing weights for previous layers to generate 
higher level data as input for that layer. If the RBM was perfectly learnt we can train the 
higher layers correctly. 



Application of Deep Learning to Midi Music Data 
 
A midi music file can be represented as a NX8 matrix with each column representing note 
number, velocity, start/end time etc. We can equivalently represent the data pictorially with 
each pixel assuming note velocity on note*time axis (Figure 2.a). For this experiment the 
data was sourced from online MIDI databank http://www.diskuspublishing.com/midi.html. We 
create feature vectors from MIDI music data from by taking patches from time*notes domain. 
This ensures that correlation between musical notes and their temporal location is not lost. 
Data generation involves selecting random files and taking random samples of size T*N in 
time*notes space. For sake of simplicity we keep the samples square i.e. T=N=10. The 
results from running machine on 50000 such samples are shown below (Figure 2.b). For 
microsecond level time interval we observe straight lines in features which represent single 
notes and chords. 

 

                        Figure 2.a   Pictorial representation of midi data.       Figure 2.b Weight matrix for each RBM hidden neuron 

 

When smaller windows in time are chosen network ends up learning chords. To learn better 
representation we rescale data to second and sub-second size intervals. We observe that 
RBM learns simple monotonic rise and falls as shown in figure 2.c. Note that these features 
are distinctly different from ones learnt on image data by RBM. The results below help us 
understand the importance of selecting a good feature vector. 

 
 

 

Figure 2.c Rise and Fall of notes learnt using RBM 

http://www.diskuspublishing.com/midi.html
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